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Individual differences in non-verbal number acuity
correlate with maths achievement
Justin Halberda1, Michèle M. M. Mazzocco1,2 & Lisa Feigenson1

Human mathematical competence emerges from two representa-
tional systems. Competence in some domains of mathematics,
such as calculus, relies on symbolic representations that are
unique to humans who have undergone explicit teaching1,2.
More basic numerical intuitions are supported by an evolution-
arily ancient approximate number system that is shared by
adults3–6, infants7 and non-human animals8–13—these groups can
all represent the approximate number of items in visual or aud-
itory arrays without verbally counting, and use this capacity to
guide everyday behaviour such as foraging. Despite the wide-
spread nature of the approximate number system both across spe-
cies and across development, it is not known whether some
individuals have a more precise non-verbal ‘number sense’ than
others. Furthermore, the extent to which this system interfaces
with the formal, symbolic maths abilities that humans acquire
by explicit instruction remains unknown. Here we show that there
are large individual differences in the non-verbal approximation
abilities of 14-year-old children, and that these individual differ-
ences in the present correlate with children’s past scores on stan-
dardized maths achievement tests, extending all the way back to
kindergarten. Moreover, this correlation remains significant when
controlling for individual differences in other cognitive and per-
formance factors. Our results show that individual differences in
achievement in school mathematics are related to individual dif-
ferences in the acuity of an evolutionarily ancient, unlearned
approximate number sense. Further research will determine
whether early differences in number sense acuity affect later maths
learning, whether maths education enhances number sense acuity,
and the extent to which tertiary factors can affect both.

Behavioural, neuropsychological and brain imaging techniques
show that a signature of the approximate number system (ANS) is
its imprecision2–13. Unlike exact verbal counting, the ANS produces
numerical representations that grow increasingly imprecise as a lin-
ear function of the target array, with larger quantities represented less
precisely than smaller quantities. This imprecision is expressed as a
Weber fraction that indexes the amount of error in the underlying
mental representation of any numerosity3–5. On average, the Weber
fraction of adults is approximately 0.11, yielding successful non-ver-
bal discrimination of arrays differing by as little as a 9:10 ratio5,14.
Here we address whether there are significant individual differences
in ANS acuity, and also whether these differences correlate with
individual differences in symbolic maths achievement.

We examined 64 14-yr-old children with normal development
whose performance in a variety of mathematical and more general
cognitive tasks had been measured longitudinally, starting in kind-
ergarten15. We tested for correlations between the current ANS acuity
of the subjects and their past achievement in symbolic maths, while
controlling for a wide range of other variables. Each subject’s ANS

acuity was assessed by psychophysical modelling of performance on a
simple more/less judgement task similar to those used previously
with infants and non-human animals. On each trial, subjects saw
spatially intermixed blue and yellow dots presented on a computer
screen too rapidly (200 ms) to serially count (Fig. 1a)16. Subjects
indicated which colour was more numerous by key press and verbal
response. The ratio between the two sets varied randomly among 1:2,
3:4, 5:6 and 7:8, with between 5 and 16 dots in each set. The colour of
the more numerous set varied randomly, and half of the trials were
area-controlled to ensure that responses were on the basis of the
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Figure 1 | Method and group performance. a, A representation of the trial
from the numerical discrimination task. b, Group performance and
modelled best-fit for all trials in the numerical discrimination task.
c, Histogram of w, the acuity of the ANS, for the sample (n 5 64), as
determined by the psychophysical model for each subject.
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number of dots and not on the total dot area (see Supplementary
Information). Subjects participated in two sessions of 10 practice
trials and 40 test trials each, totalling 80 test trials (approximately
10 min of testing per subject).

Collapsing across subjects, numerical discrimination improved as
the ratio between the presented numerosities increased, in accord
with Weber’s law and with previous investigations of the ANS3–9

(Fig. 1b). This gradual improvement in performance as a function
of ratio was modelled using classical psychophysical tools to deter-
mine the group Weber fraction (see Methods and Supplementary
Information). This returned a value of 0.265 for the group Weber
fraction (w) with an R2 value of 0.995, suggesting that there is very
high agreement between this psychophysical model of the ANS and
the behavioural data (Fig. 1b). Next, we used this same method to fit
each individual subject’s data and thereby determine each subject’s
Weber fraction. This showed surprisingly large variation in the ANS
acuity (w), ranging from 0.119 to 0.567 (Fig. 1c). The Weber fractions
of subjects can also be translated into more intuitive whole numbers
that show the ratio that would result in 75% correct performance.
Using this translation, some subjects could discriminate numerical
ratios as fine as 9:10 (w 5 0.11) whereas others had difficulty with
ratios finer than 2:3 (w 5 0.5; mean subject w < 4:5).

A question to address is whether these individual differences in
ANS acuity (w) predict individual differences in symbolic maths
achievement. Each of our subjects was tested annually from kind-
ergarten to sixth grade (ages 5–11) on a battery of standardized and
investigator-designed measures. This longitudinal assessment of
mathematical, verbal and other cognitive abilities provides a unique
opportunity to detect any enduring correlations between ANS acuity
and symbolic maths ability while controlling for other factors. Each
year (ages 5–11), symbolic maths ability was assessed using the ‘test of
early mathematical ability, second edition’ (TEMA-2)17 and/or the
‘Woodcock–Johnson revised calculation subtest’ (WJ-Rcalc)18, yield-
ing an age-referenced standardized score for each subject. We found
that the ANS acuity (w) of subjects correlated with symbolic maths
performance in every year tested (from kindergarten to sixth grade)
for both of the standardized maths tests, as summarized in Table 1.
ANS acuity in ninth grade retrospectively predicted the symbolic
maths performance of individual students from as early as kindergar-
ten, a 9-yr time span. The linear correlations of ANS acuity (w) with
symbolic maths achievement (TEMA-2 and WJ-Rcalc) for the third
grade are shown in Fig. 2a, b.

A further question to address was whether the correlation between
ANS acuity and symbolic maths achievement was due to individual
differences in more general cognitive or performance factors. In the
third grade (when subjects were approximately aged 8) we adminis-
tered several non-numerical standardized tests including measures of
rapid lexical access for colour names (rapid automatic naming, RAN-
colour)19 and full-scale IQ (Wechsler abbreviated scale of intel-
ligence, WASI-full)20. The RAN-colour is an appropriate control

for our task because it measures the reaction time to identify the
colours of 50 stimuli quickly; rapid colour naming is precisely the
behaviour required by our ANS acuity assessment. The WASI-full IQ
test acts as a control for general intelligence. WASI-full and RAN-
colour did not correlate with one another in our sample (P 5 0.699),
making them largely orthogonal for purposes of linear regressions
with ANS acuity. To examine the relationship of ANS acuity and
symbolic maths achievement while controlling for other variables,
two separate linear regressions were performed with ANS acuity (w)
as the dependent variable and performance on either the TEMA-2 or
the WJ-Rcalc test, and WASI-full and RAN-colour as independent
variables. These showed that ANS acuity (w) correlated with sym-
bolic maths achievement in the third grade even with rapid lexical
access and general intelligence controlled for (Table 2).

To assess the strength of the correlation between ANS acuity (w)
and symbolic maths achievement further, we performed extra linear
regressions between w (measured at age 14) and an even broader range
of standardized test scores obtained when subjects were in the third
grade. These 16 measures controlled for the widest possible range of
behavioural, cognitive and intelligence factors in our sample including
many factors promoted as predictors of mathematical ability (for
example, visual–spatial reasoning, working memory)21–25. ANS acuity
(w) significantly correlated with symbolic maths achievement (mea-
sured in the third grade) for both TEMA-2 and WJ-Rcalc perfor-
mance, with all 16 measures controlled for (r2

p5 0.167 and 0.200, res-
pectively, where p represents partial correlation). In contrast, no other
measure correlated with ANS acuity when symbolic maths perform-
ance and other variables were controlled for (Table 3). This means that
success on tests of symbolic mathematics throughout the school years

Table 1 | Correlation of ANS acuity (w) with symbolic maths achievement

Grade TEMA-2
R2

t
d.f. 5 62

P WJ-Rcalc
R2

t
d.f. 5 62

P

Kindergarten 0.137 3.134 0.003 0.127 2.959 0.004

First 0.140 3.171 0.002 0.326 5.480 8 3 10
27

Second 0.238 4.399 4 3 10
25 2 2 2

Third 0.324 5.448 9 3 10
27

0.282 4.933 6 3 10
26

Fourth 2 2 2 0.248 4.518 3 3 10
25

Fifth 2 2 2 0.117 2.866 0.006

Sixth 2 2 2 0.251 4.564 2 3 10
25

ANS acuity (w) measured in ninth grade retroactively correlated with symbolic maths
achievement. R2 values represent the proportion of the variance in symbolic maths achievement
that is explained by ANS acuity. R2 values .0.25 are considered large in behavioural science and
are generally viewed as having large practical significance. t values represent the distance,
measured in units of standard error, between the obtained correlation and the null hypothesis of
no correlation. P values represent the probability of obtaining the observed correlation in a
sample of data by random chance when there is truly no relation in the population.
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Figure 2 | Regressions. a, b, Linear regression of the standard score for each
subject on the TEMA-2 test (a) or on the WJ-Rcalc test (b) of symbolic maths
achievement and the acuity of the ANS (w). For TEMA-2 and WJ-Rcalc,
higher numbers indicate better performance, whereas for the Weber
fraction, lower numbers indicate better performance.
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can be retrospectively predicted by a subject’s ANS acuity in young
adulthood, as measured by the simple task of determining which of
two quickly flashed arrays has more dots, even with extensive controls
for other cognitive and performance factors.

Our results are consistent with at least two interpretations. Given
that it is functional in infancy7, long before the onset of symbolic
mathematics instruction, the ANS may have a causal role in determin-
ing individual maths achievement. Indeed, neuropsychological evid-
ence suggests that the ANS is activated during symbolic mathematical
reasoning across the lifespan13; therefore individual differences in ANS
acuity might give rise to individual differences in maths ability.

Alternatively, individual differences in the quantity or quality of
engagement in formal mathematics might increase ANS acuity. This
latter possibility is hinted at by cross-cultural differences in Weber
fractions, with maths-educated adults having better ANS acuity than
adults from indigenous cultures lacking maths education5,14. These
causal relationships, possible tertiary factors and the trainability of
ANS acuity26 remain to be explored. Further evidence will add to
the present results, which suggest that our ability to reason over sym-
bolic numbers is deeply entwined with an evolutionarily ancient sys-
tem for numerical approximation.

METHODS SUMMARY
At age 14 (that is, ninth grade), ANS acuity was assessed for 64 subjects (see

Methods). The percentage correct on the ANS task was modelled for each indi-

vidual subject as 1 2 error rate, where error rate is defined as:

1

2
erfc

n1{n2ffiffiffi
2
p

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1zn2
2

p
 !

where erfc(x) is the complementary error function related to the integration of

the normalized Gaussian distribution. This model fits percentage correct as a

function of the Gaussian approximate number representations for the two sets
displayed on a trial (n1 and n2, that is, blue dots and yellow dots) with a single free

parameter, the Weber fraction (w; see Supplementary Information)5.

Correlations presented were between this estimate of ANS acuity (w), measured

at age 14, and scores on standardized cognitive and performance measures, from

kindergarten to sixth grade.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Table 3 | Correlations controlled for all available factors

Measure (task) r2
p

t
d.f. 5 40

P

With TEMA-2
Symbolic maths (TEMA-2) 0.167 2.831 0.007

Intelligence (WASI-full) 0.005 0.472 0.640

Task demands (RAN-colour) 0.023 0.981 0.332

Verbal IQ (WASI-verbal) 0.005 0.459 0.649

Performance IQ (WASI-performance) 0.006 0.482 0.632

Executive functions (CNT-B3) 0.021 0.918 0.364

Visual working memory (MemPuzl) 0.067 1.694 0.098

Visual segmentation (DTVPfg) 0.009 0.599 0.552

Object perception (DTVPfc) 0.001 0.172 0.864
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Visual motor integration (VMI) 0.035 1.213 0.232
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Rapid lexical access (RAN-letter) 0.049 1.435 0.149

Rapid lexical access (RAN-number) 0.012 0.685 0.497

Gender 0.028 1.069 0.291

With WJ-Rcalc
Symbolic maths (WJ-Rcalc) 0.200 3.149 0.003

Intelligence (WASI-full) 0.013 0.736 0.466
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Verbal IQ (WASI-verbal) 0.009 0.605 0.549

Performance IQ (WASI-perf) 0.013 0.727 0.472

Executive functions (CNT-B3) 0.035 1.208 0.234

Visual working memory (MemPuzl) 0.084 1.916 0.062

Visual segmentation (DTVPfg) 0.032 1.148 0.254

Object perception (DTVPfc) 0.001 0.201 0.842

Visual reasoning (DTVPvc) 0.008 0.578 0.566

Spatial reasoning (DTVPps) 0.018 0.869 0.390

Visual motor integration (VMI) 0.013 0.725 0.473

Word knowledge (WJ-Rlwid) 0.014 0.757 0.454
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Rapid lexical access (RAN-letter) 0.014 0.757 0.454

Rapid lexical access (RAN-number) 0.000 0.037 0.970

Gender 0.012 0.684 0.498

ANS acuity (w) measured in ninth grade retroactively correlated with third grade symbolic
maths achievement and other measures. r2

p values represent the proportion of the variance in
ANS acuity accounted for by the listed variable when controlling for all other variables in the list.
t values represent the distance, measured in units of standard error, between the obtained
correlation and the null hypothesis of no correlation. P values represent the probability of
obtaining the observed correlation in a sample of data by random chance when there is truly no
relation in the population.

Table 2 | Correlations controlled for cognitive and performance factors

Measure (task) r2
p

t
d.f. 5 60

P

With TEMA-2
Symbolic maths (TEMA-2) 0.146 3.205 0.002

Intelligence (WASI-full) 0.013 0.887 0.379

Task demands (RAN-colour) 0.004 0.492 0.625

With WJ-Rcalc
Symbolic maths (WJ-Rcalc) 0.155 3.325 0.003

Intelligence (WASI-full) 0.070 2.124 0.038

Task demands (RAN-colour) 0.017 1.023 0.310

ANS acuity (w) measured in ninth grade retroactively correlated with third grade symbolic
maths achievement and other measures. r2

p values represent the proportion of the variance in
ANS acuity accounted for by the listed variable when controlling for the two remaining variables
in each analysis (TEMA-2 or WJ-Rcalc). t values represent the distance, measured in units of
standard error, between the obtained correlation and the null hypothesis of no correlation. P
values represent the probability of obtaining the observed correlation in a sample of data by
random chance when there is truly no relation in the population.
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METHODS
Subjects. Sixty-four 14-yr-old children participated (32 male; mean age 14 yr 10

months, ranging from 14 yr 3 months to 15 yr 9 months). They were from lower-

middle to upper-middle economic backgrounds and were enrolled in normal

(that is, non-learning-disabled) public classrooms in a single suburban school

district outside of Baltimore, Maryland, USA. Throughout the longitudinal por-

tion of the study, subjects were tested yearly in one, two or three 1-h sessions. The

numerical discrimination task was performed during a laboratory visit during the

tenth year of the longitudinal study (that is, ninth grade). Further details are given

in the Supplementary Information. A total of 80 14-yr-olds were tested during the
tenth year assessment but 9 were removed from the final sample owing to high

variability in their performance on the ANS acuity assessment (see Modelling and

analysis section), and 7 were removed because of missing data for some portion of

the standardized tests in grades kindergarden to sixth grade.

Numerical discrimination. Subjects completed this task twice at an interval of

approximately 60 min, as the first and last sub-tasks in a larger test battery from

the longitudinal study. Each run of the task lasted 5 min. Subjects viewed dot

arrays on a computer screen and judged whether there were more blue or more

yellow dots. For each trial, pressing the space bar initiated a 250 ms blank-screen

delay followed by a 200 ms appearance of an array of intermixed blue and yellow

dots. After the array had disappeared, subjects had an unlimited amount of time

to indicate their response by pressing a colour-coded keyboard button and

saying the name of the more numerous colour aloud. Reaction time averaged

approximately 1,100 ms across subjects. Subjects were told that, if they wished to

change their choice, they could correct an erroneous key-press response by

reporting the intended response to the experimenter, who noted it on a score

sheet. Self corrections were reported by only 6 of the 64 subjects and accounted

for only 7 out of the 5,120 total trials recorded in the study. The number of dots
in each set in the array ranged from 5 to 16. Whether the yellow or blue set was

larger was randomized. Each trial was drawn from one of four ratio bins in which

the ratio of the smaller to the larger set was 1:2, 3:4, 5:6 or 7:8. For each of two

runs of the experiment, subjects received 10 practice trials randomly selected

from these ratios followed by 40 randomly ordered test trials (10 trials per ratio).

Half of the trials in each ratio were ‘dot-size controlled’: the size of the average

blue dot was equal to the size of the average yellow dot. On these trials, the set

with more dots necessarily also had a larger total area on screen. The other half of

trials were ‘area controlled’: the total number of blue pixels equalled the total

number of yellow pixels such that the total cumulative area of the two sets was

identical. The set with more dots thereby had smaller dots on average. Because

the two sets were spatially overlapping and each dot was randomly placed in a

shared display window, area-controlled trials also controlled for other continu-

ous variables associated with number such as total dot density, inter-dot distance

and the total envelope size of each set. Preliminary analyses showed similar

results for dot-size-controlled and area-controlled trials and these data were

therefore combined for each subject. On both dot-size-controlled and area-

controlled trials, individual dot size varied randomly by up to 635% of the set

average to discourage the use of individual dot size as a proxy for number. The

diameter of a typical dot subtended approximately 1 degree of visual angle from a

viewing distance of 50 cm.

Modelling and analysis. Previous investigations have modelled numerical

representations either as having linearly increasing means and linearly increasing

standard deviation27, or as having logarithmically compressed means with con-

stant standard deviation8. Both of these formats capture the performance pattern

that is characteristic of the ANS (error that increases linearly with target numer-

osity). We used a classical psychophysics model that relies on a linear format of

the ANS (although a logarithmic model makes the same predictions for our

simple numerical acuity task), which provides a psychologically plausible model

of performance in numerical discrimination5. Percentage correct was modelled

as a function of increasing ratio (larger set/smaller set, or n2/n1). The numerosity

for the blue set and yellow set were represented as Gaussian random variables

(that is, X2 and X1) with means n2 and n1 and standard deviations equal to the

Weber fraction w 3 n. Subtracting the Gaussian for the smaller set from the

larger set returned a new Gaussian with a mean of n2 2 n1 and a standard

deviation of w!(n1
2 1 n2

2) (simply the difference of two Gaussian random vari-

ables). Percentage correct was then equal to 1 2 error rate, in which error rate is

defined as the area under the tail of the resulting Gaussian curve, computed as:

1

2
erfc

n1{n2ffiffiffi
2
p

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1zn2
2

p
 !

This model fits percentage correct on the numerical discrimination task as a

function of the Gaussian approximate number representations for the two sets

(that is, blue and yellow dots) with a single free parameter, the Weber fraction

(w). An individual subject’s Weber fraction (w) describes the standard deviations

for the Gaussian representations of the ANS, thereby describing the amount of

overlap between any two Gaussian representations, and thereby predicting per-

centage correct for any numerical discrimination. Using this model, the best-fit

value for the Weber fraction (w) was determined by a program implementing the

Levenberg–Marquardt algorithm for nonlinear least-squares fit on the average

percentage correct in each ratio bin for each subject. The model attempts to

determine the best-fit value for w in 50 iterations, each iteration being an attempt

to reduce the sum of squared error. The model did not settle on a value for 9 of

the original 80 subjects we tested, owing to high variability in the accuracy of

their responses. These subjects were removed from the analysis.

27. Brannon, E. M., Wusthoff, C. J., Gallistel, C. R. & Gibbon, J. Numerical subtraction
in the pigeon: evidence for a linear subjective number scale. Psychol. Sci. 12,
238–243 (2001).
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